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Ugi/Smiles access to pyrazine scaffolds
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Abstract

New pyrazine and quinoxaline scaffolds were obtained via an Ugi/Smiles four-component coupling of pyrazinone or quinoxalinone
derivatives with isocyanides, aldehydes, and primary amines.
� 2008 Elsevier Ltd. All rights reserved.
A few years ago, we reported a new Ugi-type four-com-
ponent coupling of isocyanides with aldehydes, primary
amines, and electron-deficient phenols.1 The key step of
this transformation involves a Smiles rearrangement of a
phenol imidate intermediate. We also showed that the
scope of this reaction could be extended to the use of acti-
vated pyridines as well as hydroxy- and mercapto-pyrim-
idines (Scheme 1).2 Now we report the results of our
study on pyrazinones and their benzo-fused analogues,
quinoxalinones.
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Scheme 1.
Pyrazines represent an important class of heterocyclic
compounds.3 As several biosynthetic paths allow the
conversion of an amino acid into a pyrazine, this structural
unit is found in many natural products. They are important
flavor ingredients in food,4 and have shown interesting
anticancer5 as well as antituberculosis6 activities. Pyrazines
have been used widely as agrochemicals as well.7 These
properties prompted us to examine the potential of the
Ugi–Smiles coupling for the preparation of amino-
piperazine libraries and their benzo-fused analogues,
quinoxalines.

Different pyrazinones were prepared by condensing a-
dicarbonyl compounds with the corresponding a-amino
amides. These pyrazinones were treated with a stoichio-
metric amount of a carbonyl compound, an amine and
an isocyanide to perform the Ugi–Smiles coupling. The
expected amino-substituted pyrazines were obtained in
moderate to good yields as shown in Table 1.8 The best
yields were obtained in toluene at 100 �C. Under these con-
ditions, tert-butylisocyanide gave a poor yield of product
due to its low boiling point (Table 1, entry 4). The dimeth-
ylpyrazine derivatives 1d–f reacted sluggishly and gave low
yields of the desired adducts (Table 1, entries 9–11).

Next, quinoxalinones were investigated as potential
partners in this four-component coupling. Due to the poor
solubility of quinoxalinone 3, toluene had to be replaced by
DMSO as a solvent.9 Under these conditions, the desired
adducts were obtained albeit in poor yields (Scheme 2).

Afterwards, we envisioned the use of mercapto deriva-
tives to improve the efficiency of these couplings. Indeed,
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Table 1
Four-component formation of amino-pyrazines
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Table 1 (continued)

Entry Pyrazinone Time Product Yield (%)
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Scheme 2.

Table 2
Thioamide formation from a mercaptopyrazinone and a mercapto-
quinoxalinone
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previous work on pyrimidines and benzo-fused hetero-
cycles, such as benzothiazoles and benzoxazoles, demon-
strated a higher reactivity of mercaptans over the
corresponding hydroxy derivatives.10 Mercaptopyrazinon-
es and quinoxalinones were obtained by the treatment of
the corresponding hydroxy derivatives with P2S5. When
submitted to the Ugi–Smiles coupling, these mercaptans
turned out to be less efficient than the corresponding
hydroxyl derivatives (Table 2).11 The higher solubility of
quinoxaline 4b allowed the reaction to be performed in
toluene, however the yields were not improved.

To conclude, we have disclosed a new multicomponent
formation of aminopyrazines by an Ugi-type procedure.
The access to these new scaffolds confirms further the util-
ity of Ugi–Smiles couplings for the preparation of amino-
substituted nitrogen heterocycles. The extension of these
couplings to triazines and tetrazines as well as our efforts
to improve these additions with Lewis acids will be
reported in due course.
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